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In Figs. 7(a–c) the authors presented the results of a static loading 
test on a pile with five strain-gauge levels, indicating load distri-
butions for each of 12 load levels [Fig. 7(b)]. Each of the gauge 
levels provided records of load movement or shear stress versus 
movement (determined from telltale records) and represents the re-
sponse of a pile element, though the authors showed only one such 
load-transfer diagram [Fig. 7(c)]. However, I am puzzled by the 
fact that the maximum movement in this shaft shear diagram is 
larger than that shown for the maximum movement of the pile 
head and pile toe [Fig. 7(a)].

The authors used the Vijayvergiya function (Vijayvergiya 1977) 
with the coefficient V fixed (preset) to 2 to fit calculated load 
move-ments to measured test records. (I assume that the records 
show the response measured at a certain depth in a test pile, i.e., at 
a pile element.)
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where Q = applied load; Qtrg = target load or resistance; V = func-
tion coefficient >0; δ = movement associated with Q; and δtrg = 
target movement (mobilized at Qtrg).

The authors’ Fig. 8 presents results of fitting the strain-softening 
Vijayvergiya function to test records, labeling the fit excellent 
agreement. Beyond the maximum test load, the authors assumed 
plastic response (ultimate resistance) as opposed to strain softening. 
Indeed, up to the maximum movement measured, about 7 mm, the 
fit is good and so are the agreements obtained by fitting the Chin-
Kondner, Vander Veen, Hansen, and Zhang functions, as shown 
in Fig. 1, applying function coefficients C1 ¼ 0.065, a ¼ 0.007, 
C1 ¼ 0.013, and b ¼ 0.85, respectively. Details on the mathemat-
ics of the quoted functions and the range of function coefficients are 
presented in Fellenius (2017).

I have determined a best fit of a few of the general t z=q z 
functions to the authors’ examples, as follows.

The Vijayvergiya function according to Eq. (1) (dashed curve) 
shows a strain-softening trend beyond the maximum load that may 
or may not be representative for the actual test had the test contin-
ued beyond the maximum movement. The plots show that a back 
calculation only addressing an initial portion of the records can 
achieve an excellent agreement with any function.

Fig. 2 shows shaft-resistance response presented in the authors’ 
upper graph in Fig. 10 with predicted fit and the discusser’s re-
sults from fitting the Vijayvergiya, Hansen, and Zhang functions 
(Vijayvergiya 1977; Hansen 1963; Zhang and Zhang 2012), all three

being strain-softening t-z functions. The measured records show a 
last reading, single non-strain-softening response (a final measured 
point) that, I believe, is a questionable reading. The authors’ 
predicted curve applies the American Petroleum Institute (API) 
curve, which is a preset three-point curve with a shape adjustment 
per soil type and as tweaked to a perceived ultimate resist-
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tance. As no surprise, the predicted curve does not agree with the 
measurements. In contrast, the Zhang function (b ¼ 0.0102) 
agrees quite well apart from that last questionable record. The 
Vijayvergiya function (V ¼ 2) fits the curve up to the peak and 
two values beyond. I was not able to obtain a good fit beyond 
the peak load using the Hansen function.

I obtained similar results when fitting the functions to the 
authors’ lower graph in Fig. 10 as shown in Fig. 3. Again, the API 
curve (predicted curve) does not fit the test records. The Zhang 
function (b ¼ 0.0325) agrees well all through the test records while 
the Hansen (C1 ¼ 0.00087) function does not give a good fit. The 
Vijayvergiya function with V ¼ 2 fits the curve up to the peak and 
two values beyond. The strain-hardening functions [ratio function,  
Θ ¼ 0.23, Chin-Kondner, C1 ¼ 0.00323, and Vander Veen, b ¼ 
0.070; (Gwizdala 1996; Chin 1971; Van der Veen 1953)] fit the 
measured curve up to the peak shear stress, but, of course, not 
beyond, as the test results showed strain-softening response.

The authors’ Fig. 18 shows measured and modeled strain-
hardening load-movement response of a pile toe. Fig. 4 shows 
curves fitted to strain-hardening functions Chin-Kondner (C1 ¼
0.00032) and Gwizdala (ϴ ¼ 0.52) strain-hardening functions. The 
fit by the ratio function is quite good. It is interesting to see that 
good fits were also reached by the Hansen (C1 ¼ 4E7) and the 
Vijayvergiya (V ¼ 1.1) functions. The authors’ curves are not 
strain-hardening functions, but the fits were achieved assuming 
the respective peak values to occur after the maximum test load

Zhang and Vander Veen functions are not included as they did not 
provide a good fit.

In my experience, most cases will show that the best fit of a 
pile-toe response is achieved by the ratio function (Gwizdala 1996). 
The authors modeled the measured unit toe resistance by means 
of a preset hyperbolic curve formulated to depend on the pile 
diameter and a factor. The fit is not good, which can be the 
result of the authors’ mistaken assumption that there would be a 
correlation between unit toe resistance and toe movement based 
on the pile diameter; incorporating the pile diameter in a load-
transfer function is not useful.

For movement beyond a capacity, the authors applied plastic 
response. However, a load-transfer back calculation does not re-
quire imposing an assumed ultimate resistance. Indeed, imposing 
an ultimate (plastic) resistance beyond a certain value is not just 
unnecessary, it is wrong. Even for shaft resistance, strain-hardening 
response is more common than plastic or strain-softening. Load-
transfer is a deformation response. This notwithstanding that a 
couple of the load-transfer functions can be used as reference to 
ultimate resistance.

A simple Excel template that considerably speeds up a back-
calculation effort can be downloaded (Fellenius 2016a).

The authors’ applied preset load-transfer functions to the mea-
sured pile-element records. Preset refers to either a specific function 
with predetermined coefficients and an assumed ultimate (plastic 
resistance) or a function that includes coefficient determined from 
soil exploration information, such as the pressuremeter modulus. 
Good or poor fits obtained by such preset functions are of little 
relevance to expectations of pile response to load, i.e., design of 
piled foundations. Records of pile element response to load should 
be back-analyzed without preset coefficients. The coefficients 
resulting from the achieved fit can then be correlated to 
conventional geotechnical parameters, such as shear strength, 
cone stress and friction ratio, compressibility, and pressuremeter 
modulus, enabling a database for reference to design efforts to 
be produced. The conventional parameters, thus calibrated, 
would serve as a database for guiding the selections of functions 
and function coefficients to use in a specific design.

I suggest that the authors reanalyze their case records of 
measured pile-element load movements using the general 
expressions of the functions without imposing a 
preselected ultimate resistance and limiting the cases to those 
with significant movement. The functions and function 
coefficients that established good fits could then be correlated to 
the relevant soil parameters, and the range of correlations might 
prove to be useful toward selecting function coefficients to use in 
predicting the response of a given pile to an applied load.

To fit to measured pile element responses (i.e., records from 
the gage locations), then, a suitable computer program needs to 
be engaged to combine the response of all the elements 
making up the pile. For example, the UniPile version 5 
software (Goudreault and Fellenius 2014), which enables a 
calculation of the resulting pile head (and pile-toe 
movement) for use, say, in settlement analysis of a foundation 
supported on the piles (Fellenius 2016b).

The authors also applied load-transfer functions to back-
calculation of the pile-head load-movement curve (authors' Fig. 
22). It is difficult to see what would be gained or learned by 
fitting a load-transfer function to a pile-head load-movement 
response. That response is a summary of the responses of 
the series of individual pile elements along the shaft and the 
toe element plus the elastic shortening of the pile shaft. 
A characteristic point on the pile-head load-movement curve, 
such as peak load, does not occur at the same time as the 
similar characteristic points occur at the pile elements.
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To illustrate, assume that a 300-mm-diameter, 30-m-long 
concrete pile is installed in a soil with a shaft strain-softening 
response shown in Fig. 5 and a pile-toe resistance per a ratio 
function. Then, a simulated static loading test would result in 
load-movement curves shown in Fig. 6 for the pile head, pile 
shaft, and pile toe. The simulation is carried out using the 
UniPile version 5 soft-ware (Goudreault and Fellenius 2014).

The results can be used in a back calculation fitting load-
transfer function to the curves. However, these functions would be 
quite different to those representing the individual pile elements. 
As demonstrated in Fig. 7, when the pile-head curve reaches the 
peak load, the peak shear resistance along the pile about a quarter 
of the length down is well past its peak, at midpoint the resistance 
is just about past the peak, and three-quarters of the length down, 
the peak resistance is not yet quite reached. Most important, the 
pile toe has hardly experienced sufficient movement to register 
resistance, assuming a uniform soil profile. Had the case been 
made up using several different layers, the importance of consid-
ering each pile element separately would have been even more 
obvious.

Figs. 6 and 7 illustrate the futility of calculating a pile capacity
as a sum of ultimate shear along pile elements, defined one way
or another, and combined with a perceived ultimate toe resistance.
It will not be the same as a capacity determined from the pile-head
load-movement curve. Both approaches rely on the concept of pile
capacity and, therefore, neither approach is particularly useful for
design analysis. As mentioned, the more useful approach is to base
the analysis on load-transfer functions acting at a series of pile
elements. It enables a design to be carried out that addresses set-
tlement of the single pile and pile group, the more realistic issue in
piled foundation design.
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